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King [preceding Comment, Phys. Rev. E70, 058101(2004)] points out biases in one of the two common
algorithms for generating simple random graphs—the matching, or stub-pairing, algorithm. We clarify that in
our simulations of simple graphs we used a different algorithm, the Markov-chain Monte Carlo switching
algorithm, which is more uniform. As for multigraphs, the stub-pairing algorithm indeed samples uniformly
configurations rather than multigraphs, as King points out, and thus is relevant for our model, which pertains
to configurations. Finally, we demonstrate that the algorithm we used to generate families of random networks
with scale-free out-degree and compact in-degree does not result in noticeable biases.
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King [1] correctly points out that the direct network gen-
erating algorithm used by Newmanet al. and many others
(matching, or stub-pairing, algorithm) samples graphs with
multiple edges between vertex pairs with lower probability
than simple graphs. This bias did not affect the calculations
of Newmanet al. [2], since they were interested in graph
properties only in the large system size limit, and the correc-
tions due to multiple edges vanish in this limit.

We presented approximate formulas for subgraph num-
bers on networks drawn from the configuration model—
multigraphs with an arbitrary degree sequence[3]. We
showed that for many real-world networks these formulas
give a good estimate also for random graphs with an arbi-
trary degree sequence, with only single edges allowed.

King points out that the modified matching algorithm pre-
sented in [4] does not uniformly sample simple graphs
(simple graphs are graphs that are constrained not to have
multiple edges in the same direction between two nodes). As
a result of King’s Comment, we have recently tested the
degree of nonuniformity of various randomizing algorithms
[5]. Two methods, a Markov-chain Monte Carlo(switching)
algorithm and the modified matching algorithm, were bench-
marked against a different and more uniform non-Markov-
chain algorithm(“go with the winners”[6,7]). It was shown
on both a toy model network and on networks with the de-
gree sequence of real-world networks that the switching
method samples graphs with single edges as uniformly as the
“go with the winners” algorithm, and does so with a rela-
tively fast mixing time. The modified matching algorithm
introduces a bias which becomes more prominent on net-
works in which both out-degree and in-degree sequences are
heavy tailed. We therefore recommend the switching algo-
rithm for purposes of network motif detection and network
analysis. All the results in[4,8], as well as the direct enu-
meration results for graphs with single edges of Table I in
[3], were obtained using the switching algorithm.

To test our approximate formulas for theconfiguration
model(which allows multiple edges), we used the matching

algorithm in Table I of[3], allowing more than one edge
between two nodes. This resulted in good agreement with
our approximate formulas for multiple-edge networks(Table
I of [3]). King correctly points out that the matching algo-
rithm uniformly generates configurations and not multi-
graphs. Indeed, our approximate formulas relate to configu-
rations and not to multigraphs. The formulas rely on the fact
that the expected number of edges between a node withK
outgoing edges and a node withR incoming edges is
K* R/E, whereE is the number of edges in the network. In
the toy network of Fig. 1 of King, this predicts2*2/4=1
edge between nodesW andZ. Indeed, averaging the number
of edges between nodesW andZ over the 24configurations
results in the expected average of 1. Averaging the number of
edges between nodesW and Z over the sevenmultigraphs,

FIG. 1. Comparison of subgraph counts generated by two pro-
cesses:(1) the algorithm described in the text for creating an en-
semble of scale-free random networks and(2) a switching algo-
rithm applied to each network of(1), with a further randomization
of 100–200 switches per edge. Shown are the numbers of feed-
forward loop subgraphs in 1000 random networks withN=2000
nodes, with scale-free out-degreesg=2.1d and compact in-degree.
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however, results in a higher numbers8/7d (each one of the
top two multigraphs in King’s Fig. 1 includes two configu-
rations, and each one of the bottom five graphs includes
four).

In Ref. [3], we further tested the scaling of subgraph num-
bers, based on the approximate formulas, on an ensemble of
random networks with a scale-free out-degree and compact
in-degree(Figs. 3 and 5 of Ref.[3]). To construct these net-
works from scratch, we used the following algorithm: For
each nodei a numberWi was drawn from a scale-free distri-
bution, and then each node of the remainingN−1 network

nodes was connected to nodei with a single edge if:nr ,Wi,
wherenr is a random number uniformly generated between 0
and 1. This results in an out-degree ofWi on average for
nodei, and in a compact in-degree for all nodes. In this class
of random networks, the probability of more than a single
edge between any two nodes is vanishingly small in the large
system size limit and the uniformity bias is negligible. Fur-
ther randomizing these networks using the switching algo-
rithm did not change the results(Fig. 1).

We thank Oliver King for motivating the research pre-
sented in[5].
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